Tag Archives: nrel

Hard results of green buildings in Colorado accelerate the adoption

Buildings are improving, becoming more comfortable but also more efficient in use of energy and water. How can this adoption of best technologies and designs be accelerated?

A panel of experts at the Rocky Mountain Green Conference held in Denver recently agreed that examples help. And Colorado has many examples.

“At the end of the day, hard results are the best education,” said Jeff Ackermann, director of the Colorado Energy Office. “If you create baselines of comparable buildings that are built to current high standards—if people can see the real benefits, that is where the conversation starts.”

While energy-efficiency has drawn much attention, he added, the conversation about sustainability should also encompass water use, indoor air quality, and proximity to mass transportation. All are criteria used in the U.S. Green Building Council’s LEED evaluation process.

The exterior of the NREL net-zero office building. Photo/Allen Best

Some of Colorado’s best examples are found at the National Renewable Energy Laboratory, located just off I-70 in Golden. The campus has six buildings certified at the highest level of LEED certification, platinum. One of them is the world’s largest net-zero energy building. NREL uses techniques, such as maximizing use of existing daylight, to reduce need for artificial lights, and maximize solar collection. The parking spaces are covered with photovoltaics.

On hot summer afternoons, the building produces more electricity than it consumes. Other times, it must draw on the grid. As such, most net-zero buildings rely upon carbon energy for backup.

The interior of  the NREL net-zero energy office building uses judicious use of natural lighting to minimize artificial light. Photo/Allen Best

But it’s easier to hit such lofty goals in building performance when you start from scratch, pointed out Frank Rukavina, sustainability director at NREL. He noted that residential and commercial buildings account for about 40 percent of all energy use in the United States. As such, they represent a huge opportunity for potential savings.

Much is happening in Denver. Jerry Tinianow, chief sustainability officer for the city government, said that municipal buildings have become 20 percent less energy intense, with an additional goal of milking another 5.6 percent in savings as compared to the 2005 baseline.

Denver is also trying to help create other models. One is at the former Lowry Airfield, on the border with Aurora. There, a 70-acre enclave called Buckley Annex is being planned as a net-zero neighborhood, meaning the amount of electricity consumed on site in homes, businesses and other community infrastructure will be no greater than the amount that is produced there.

Another project aims for net-zero in commercial buildings downtown. It is moving forward under the auspices of Architecture 2030. “What we really like about it is it’s a voluntary association and not a city-mandated association of buildings, and it’s one in which the government plays a secondary role,” said Tinianow.

If buildings produce their own energy, they won’t rely upon utilities for outside generation, at least not in the same way. Such dispersed production is called distributed generation—and it’s worrisome to utilities whose business model for the last century has consisted of earning revenues based on the volume of electricity sold.

According to Mark Schwartz, representing Xcel Energy on the panel, “We are trying to find a way to embrace that,” he said of local, distributed energy generation.

“Through energy efficiency programs, we have been able to drive down the demand curve.” But net-zero buildings during the next 15 years “has to be something we look at from a utility perspective.”

New financial instruments that allow savings of energy efficiency to be financed will become more important moving forward, said speakers.

Ackermann noted legislation was passed last year to allow PACE programs for commercial buildings, giving building owners the ability to improve paybacks on investments to make buildings more green.

Tinianow pointed to residential energy efficiency programs that make inefficiency upgrades part of an employee benefits program, similar to a 401k benefit. When that happens, he said, “We will see massive expansion of energy efficiency improvements.”

Source: Mountain Town News 

]

Energy Department Launches Funding Portal

U.S Department of Energy

U.S Department of Energy

The Energy Department has launched a new Financing & Funding portal on its web site to help financiers and developers of energy technology and projects find applicable programs.

The Energy Finance Working Group created three parts: resources for businesses; resources for projects; and additional resources. Information on financing a new energy business can be found at:

Funding or financing a new project resources are at:

The additional resources area provides links to related information and federal government programs, such as Grants.gov, the Overseas Private Investment Corporation, and the Export-Import Bank of the United States.

More at: http://www.energymanagertoday.com

NREL Develops Energy Audit Tool

concept3D (1)The National Renewable Energy Laboratory (NREL) and Denver-based software developer concept3D have developed the simuwatt Energy Auditor, a tool that could replace clipboard-style audits with a computer model that could save money for building owners.

The tool that pinpoints potential energy savings could cost 35 percent to 75 percent less than traditional audits. The package is set to hit the energy retrofit industry next year after tests are completed at six Department of Defense facilities over the next few months.

Audits conducted by energy service companies (ESCOs) could be cost-prohibitive for a small building owner. But the simuwatt Energy Auditor allow ESCOs to perform audits using mobile tablets and advanced energy modeling, skipping the steps of manual input and transfer. The intent is that lower costs would create more savings and extend the benefits to even more building owners.

Also, the finished audit is stored electronically and serves as the baseline for the next audit, which is typically done a few years later.

NREL said the simuwatt Energy Auditor is a combination of different ideas that marry the energy audit with energy modeling through OpenStudio and other tools. NREL said no other commercially available product has the ability to collect building data onsite, automatically move the data into an analysis tool, and perform a detailed energy simulation this quickly.

The commercial buildings sector in the US alone represents 7 percent of total energy consumption worldwide. Commercial buildings consume about $134 billion in electricity each year, according to DOE. A 200,000-square-foot office building that pays $2 per square foot in energy costs annually can save tens of thousands of dollars with a modest reduction in energy consumption.

 

Photo credit: Dennis Schroeder

Financial innovation is the next big thing in clean energy and efficiency

Financial innovation is the next big thing in clean energy and efficiency By: Chris Nelder- Smart Planet

Old Windmill

A new wave of innovation is sweeping the energy transition sector, promising to accelerate deployment and cut the costs of energy-efficiency measures, as well as wind and solar generation.

It isn’t a technological improvement, like cutting hardware and labor costs. It isn’t a policy mechanism like feed-in tariffs. It isn’t even a new business model, like selling storage services.

It’s financial innovation.

If the very words make you clutch your wallet and roll your eyes, I understand. After all, it was the innovation of mortgage-backed securities, credit default swaps and collateralized debt obligations that opened the door to an unprecedented level of financial recklessness and nearly brought down the global economy five years ago.

However, at the risk of incurring the wrath of the market gods: This time it’s different.

The problem: The capital gap

Financial innovation in the cleantech sector is needed for a simple reason: Wind and solar systems (even large, utility-scale ones) and energy-efficiency upgrades are hard to finance. They typically require a homeowner or business owner or renewable project developer to come up with a significant chunk of capital up front, then receive the benefits of the investment over a long time horizon — typically, 20 years or more. They’re all a little different, making it hard to evaluate risk. Even if an investment offers an excellent return over time, coming up with the initial capital can be too high a hurdle. And when a developer manages to raise the money to build a project, it usually needs to sell the project to a long-term investor so it can free up its capital to build the next solar park or wind farm.

The natural long-term holders of assets like these are pension funds, infrastructure funds, sovereign wealth funds, insurance funds, and the like. They are accustomed to investing tens or hundreds of millions of dollars at once and then receiving modest, single-digit returns over a period of decades. This is the so-called fixed-income market, where the investments are usually come in the form of very low-risk assets like Treasury bills, equity positions in historically stable sectors like utilities, or long-term, high-grade corporate debt.

The problem in the cleantech sector has been matching assets to their natural investors.

Over the past year, I’ve heard the same story over and over again. Globally, fixed-income investment entities have trillions of dollars of available capital that they would love to put into renewable energy and efficiency projects. Enough to build a huge chunk of the new infrastructure needed to transition the world from fossil fuels to renewable energy. But the available projects are too small. Whether the investment is $50,000 or $500 million, it still requires about the same level of due diligence effort to evaluate: many billable hours paid to high-priced lawyers, accountants, researchers, and fund managers. That cost can be a killer if the investment is less than (roughly) $5 million dollars; there just isn’t enough margin to justify it.

So the trick has been to find a way to “de-risk” (do the due diligence) and bundle cleantech and energy-efficiency investments, in order to be able to offer a suitably large investment to the fixed income market at an acceptably low transaction cost.

Enter financial innovation.

Solution 1: Standardization

Several recent initiatives are tackling the first part of the problem by finding ways to standardize investments.

The U.S. National Renewable Energy Laboratory (NREL) just this week released a set of standardized contracts for solar projects. The contracts, which include lease agreements for residential solar systems offered by third-party solar leasing companies and commercial power purchase agreements (PPAs) for larger systems, were developed by a working group NREL convened in the spring called Solar Access to Public Capital (SAPC).

Comprising some 20 to 25 companies in the sector — including project developers, law firms, and analytical entities — SAPC analyzed many existing contracts for solar projects and figured out which parts could be standardized and which parts needed to be customizable.

I asked NREL Energy Analyst Paul Schwabe, who headed the contract standardization project, why new contracts are needed. “We see a number of benefits for those leases and PPAs,” he says. “One, lowering transaction costs for entities who don’t already have those documents available; they don’t have to reinvent the wheel. Two, improving customer transparency, particularly on the residential side. By using a standard contract, the consumer can more easily compare multiple projects and know that the contract has been analyzed by a number of industry stakeholders. And three, we think it can help facilitate the pooling of cash flows into a common investment that can access capital markets.”

The working group hopes standardized contracts will reduce the cost of capital for project developers, and make it easier for customers and investors to evaluate investments. So far, the prospects are good.

“We’ve gotten buy-in from a large majority of the residential installer community, and we’ve made good inroads in the commercial industry as well,” Schwabe says. “We’ve confirmed that a large percentage of the market will use them.” The working group now has more than 125 members, he estimates, and that number is growing rapidly.

Ultimately, the standardization of contracts will make it easier to assess the expected cash flows from solar projects, and thus make it easier for investors to feel assured that projects will perform as advertised.

Solution 2: Data and metrics

The contract standardization effort is part of a broader NREL initiative to organize the industry and establish collaboration between stakeholders. NREL is also collecting data for solar performance, which will help standardize an understanding of how well various pieces of solar gear perform.

Another industry working group called TruSolar is working on a complementary set of metrics and tools to standardize solar project financing, including rating photovoltaic (PV) projects for performance and establishing credit screening criteria. TruSolar is part of SAPC. It has partnered with NREL to publicize their respective efforts and highlight the synergy between them, Schwabe says.

By collecting historical data on actual system performance and establishing standard credit criteria, the two groups will solve another part of the problem: the lack of a trusted track record.

Whereas the performance of mortgages has a well-analyzed record that stretches back over more than a century, the data trail for solar projects is only a few decades long, and only the last decade of that trail is really representative of how well modern equipment performs.

These investments in collecting data and establishing metrics will make it easier to de-risk solar projects and assign them a credit rating major investors can accept without having to do so much of their own due diligence. This will ultimately reduce the cost of capital and increase the velocity of deal-making.

Schwabe was not at liberty to say whether or not any of the major credit rating agencies are involved in SAPC, but did say that a key conclusion from an earlier NREL paper that led to its formation was that “standardization was needed for securitization and those stakeholders felt it was necessary.”

Solution 3: Securitization

Securitization is the process by which a pool of assets is bundled, graded, sliced and diced, and sold into capital markets. It’s the same process that brought the world the dreaded mortgage-backed securities. But the underlying assets in cleantech are quite different, and far less risky.

Securities in the cleantech sector rely on cash flows generated by stable things: solar equipment sits in the sun, insulation sits in buildings, and wind turbines stand and spin. As long as the gear has been properly evaluated and graded — which is part of what SAPC and TruSolar are doing — and properly maintained, then the only real risk to continued production of cash flow is weather. Fortunately, on an annual basis, insolation (the amount of light falling on a given location), wind, and temperature are quite predictable and have very long historical data records. Averaged over a period of decades, they will not deviate enough from historical averages to constitute a significant financial risk. So the actual risk of non-performance in solar- or wind- or efficiency-backed securities is far lower than the risk of a homeowner who got a “liar’s loan,” lost his job, and then couldn’t pay his mortgage.

Several new approaches to securitization in cleantech are now coming into existence.

NREL, as part of its suite of initiatives, is developing a “mock portfolio” comprising a pool of solar park assets, both commercial and residential, and testing how it might perform as a securitized investment.

SolarCity, one of the largest third-party solar leasing companies, announced this week that it will begin offering $54 million worth of “Solar Asset Backed Notes” to qualified investors. The securities, which will be secured by a pool of the company’s solar systems, leases and PPAs, will pay investors out of the cash flow those assets generate, and free up the company’s capital to invest in new projects.

Jigar Shah, the founder of SunEdison, pioneered the third-party solar leasing model companies like SolarCity and Sunrun have followed. I asked him for his take on securitization.

“The financial innovation that we’re doing now is just an extension of what we started in 2003,” he says. “We popularized it at SunEdison. Securitization is the next step. The first step was to make solar an asset class acceptable to insurance and pension funds. We got Wells Fargo, MetLife, and a few others to give SunEdison $2.3 billion in commercial paper, and something on the order of $1 billion in residential paper. Now we have the right to pursue securitization. But it only happens because the banks believe there’s a multi-billion-dollar market. Until then, the ratings agencies like S&P are not able to participate.”

Although SolarCity’s $54 million offering is tiny in the world of commercial securities, Shah sees it as significant because the company has obtained, for the first time, an investment-grade rating for commercial solar securities. Within five years, he expects the sector to be well into the billions of dollars.

In a detailed Oct. 21 essay about solar securitization for Power Intelligence, energy finance attorneys Elias Hinckley and David John Frenkil wrote that solar asset-backed securities “will enable the solar industry to access a much larger and more diverse investor base, which will eventually help to reduce the long-term cost of capital to a likely range of 3 percent to 7 percent, compared with the 8 percent to 20 percent rate required by some project finance equity and tax equity investors in the current market.”

Securitization is also coming to the building efficiency sector. Massachusetts-based insurance company Energi Insurance Services has extended its risk evaluation services for renewables to the energy-efficiency sector, including energy-savings warranties, electricity-generation performance warranties and equipment warranties. It also backstops performance guarantees offered by energy-efficiency contractors through product underwritten by the International Insurance Company of Hannover. Last month, Energi started working with NREL to analyze and quantify risk for small building energy-efficiency retrofits, giving lenders a tool they can use to rate energy-efficiency loans. Ultimately, the methodology could give rise to efficiency-backed securities, which will deliver cash flows to investors much as securitized solar projects do.

Solution 4: Crowdfunding

Oakland, Calif.-based Mosaic also offers solar asset-backed securities. Instead of being based on a pool of assets, they are issued for specific solar projects. Each note issued by the company corresponds to a certain solar installation, and the payment on those notes derives directly from the cash flow generated by the loan obligation attached to that installation.

After less than a year in business, Mosaic has more than 2,500 investors from nearly every state, who have invested as little as $25 for shares in 19 solar projects with a combined $5.7 million in asset value. Investors typically receive 4 percent to 7 percent returns annually, depending on the project. The company boasts 100 percent on-time payments with zero defaults thus far.

Speaking at the VERGE San Francisco conference last month, Mosaic CEO Billy Parish said interest is brisk in his company’s offerings. Investors are disillusioned with conventional financial markets, he says, and increasingly feel that the stock market is rigged against them. With tens of millions of dollars worth of new solar projects in the Mosaic pipeline, he is confident investors will continue to find the low risk and modest return of the notes attractive. “The transition from fossil fuels to renewables is the biggest opportunity for wealth generation this century,” he declares.

Another Mosaic innovation could open up a torrent of new capital: a security that will be eligible for purchase through IRA accounts. There is $17 trillion sitting in IRAs in the United States alone, according to Parish.

A related recent development in financial innovation will give more investors access to the cleantech sector. The JOBS Act, which President Obama signed into law in April, created a new playing field for crowdfunding that makes it easier for individuals who don’t qualify as high net worth “accredited investors” to invest small amounts in small businesses and startups which, in turn, weren’t qualified to offer public securities.

Earlier this week, the Securities and Exchange Commission finally proposed rules defining the new terms. Investors with less than $100,000 in annual income and net worth will be able to invest up to $2,000 a year, or 5 percent of annual income or net worth, whichever is greater. Those criteria are considerably looser than the ones Mosaic has operated under thus far, so it will open a much larger pool of potential investors in renewable-energy- and efficiency-backed securities.

“We’re glad to see financial innovation occurring in the renewable energy sector, including through use of securitized investments,” Parish told me.

And that’s not all. A multi-billion-dollar market in global finance for renewable energy and efficiency is now giving very large investors, like sovereign wealth funds and pension funds, easy access to these new securities. Stay tuned to this space for more on that exciting new sector.

Photo: William Kamkwamba’s old windmill, Malawi (whiteafrican/Flickr)

Third Consecutive IEEE Cherry Award for NREL

We would like to congratulate our partners at NREL, on their third consecutive IEEE Cherry Award. The research that NREL that is conducted at NREL is top notch: keep up the great work!

Learn more about the award below:

Keith Emery always had amazing computer programming skills, but he lacked that special gift for creating solar cells. So, 30 years ago he switched to something more in his wheelhouse — characterizing and measuring the efficiency of solar cells and modules.

He succeeded so well, building a world-class testing facility at the Energy Department’s National Renewable Energy Laboratory (NREL), that he was recently given the annual William R. Cherry Award by the Institute of Electrical and Electronic Engineers (IEEE) — one of the most coveted awards in the world of solar photovoltaic (PV) energy.

Emery is the third consecutive Cherry Award winner from NREL. In 2011, Jerry Olson, who developed the multi-junction solar cell, won the award. Last year, Sarah Kurtz, who helped Olson develop the multi-junction cell and is now a global leader in solar module reliability, won the award. And three other NREL scientists have won the Cherry Award in earlier years — Paul Rappaport (1980), Larry Kazmerski (1993), and Tim Coutts (2005). Emery says the cross-fertilization at NREL, with great scientists inspiring greatness in others, is the reason there have been so many Cherry Award winners at the lab — and is certainly the reason he won his.

Greg Wilson, director of NREL’s National Center for Photovoltaics (NCPV), said: “Having three consecutive Cherry Award winners from the NCPV validates the strength of the PV program at NREL and the high degree of confidence that the international PV community has in our staff.”

Emery, Kurtz, and Olson agree that NREL could not have won three Cherry Awards in a row without being given the time to research high-risk approaches to solar cells — a luxury rarely afforded private industry.

“NREL has had a sustained program in PV for 30 years,” Kurtz said. “The industry is changing very rapidly, and companies come in and go out of business. What is unique about NREL is that people here have been able to stay and work in the same fields and become experts. If we didn’t have that continuity it would be impossible to achieve that level of expertise and therefore that level of recognition.”

Kurtz recalls that when she and Olson began working on a multi-junction approach to solar cells using indium and gallium, “everyone thought it was a stupid direction, because they knew it wouldn’t work.” That consensus opinion would have been enough to frighten away investors, but a national lab like NREL has the advantage of “exploring directions companies would think are too high-risk for them,” she said.

“It was their [Kurtz’s and Olson’s] long-term attention to that material, plugging away at all kinds of problems, that made it work,” Emery said. “They ultimately showed that it was superior to anything else. Satellite manufacturers picked up on it, and now all the satellites in space and all the concentrator PV systems use that technology.”

Emery Set the Gold Standard for Measuring Solar Cell Efficiency

Emery has a Teddy Roosevelt moustache and routinely climbs high rugged mountains in the Colorado Rockies. But the Cherry Award startled this usually unflappable man.

“I was very surprised,” Emery said.

Others aren’t surprised, citing his work to bring iron-clad certainty to the claims made by solar companies about the efficiency of their cells and modules — not to mention the 320 scientific publications he’s written.

“Accredited measurements from Emery’s laboratories are considered the gold standard by the U.S. and international PV communities,” said NREL colleague Pete Sheldon, deputy director of the NCPV. “Keith has been a leader in cell and module performance measurement techniques that have been the foundation for the credibility of PV efficiency standards for a quarter century.”

The award is named in honor of William R. Cherry, a founder of the PV community. The award recognizes an individual engineer or scientist who has devoted a part of his or her professional life to the advancement of the science and technology of photovoltaic energy conversion.

In the world of solar cells, a seemingly small improvement in efficiency is almost always a very big deal. Higher efficiency links directly to cost and helps solar cells compete with other forms of energy.

Before Emery brought strict standards and independent analysis to testing and measurement, claims of high efficiency would be published in the literature without any independent verification.

“We decided that independent verification was important for credibility,” Emery said. He and his NREL colleagues standardized measurement techniques, testing cells and modules under identical environmental conditions. But that meant that companies didn’t always like the efficiency numbers they were getting back from Emery’s lab.

“The happiness factor was never in our favor,” Emery said. “We were coming in with lower efficiencies than the customer expected.”

Emery and his colleagues stuck to their guns, and soon certification from NREL was de rigueur in the solar cell world. “Our goal is to eliminate surprises,” Emery said. “If the measurements on their end disagree with our measurements, we show them why. It’s in everyone’s best interest to know what the environment is.”

The service is readily available so researchers and companies have equal access to the resources needed for independent efficiency measurement, he says. “We provide the same playing field for everyone. We have to thank the Energy Department for this. They’ve funded it. We’ve been able to offer the service to everybody from national labs to a lot of low-budget startups. They all get the same verification.”

Good Times with Electronics and Chemicals

Emery spent the first 25 years of his life in Lansing, Michigan, attending public schools before going on to Lansing Community College.

His interest in electronics goes back to seventh grade, when he made a five-tube amplifier out of a junk box hi-fi and a TV set. “I would have violated every safety rule we have at NREL, but that’s a separate issue. I’ve always been interested in computers, going back to the days of paddle switches, punch cards, and paper tapes.”

Emery started working with chemicals in community college, including some chemicals that are so potentially hazardous they’re not even allowed in some research centers today. “Yes, I had fun with chemicals.”

He earned his bachelor’s and master’s degrees at Michigan State University, where he fell under the tutelage of Stan Ovshinsky, whose pioneering work in amorphous silicon semiconductors set the course for many technologies and industries. More important to Emery, Ovshinsky introduced his young graduate students to energy-conservation devices, delivered a lecture on amorphous silicon, and “treated us like VIPs,” springing for the occasional expensive meal.

Emery was getting close to earning a doctorate for his work on high-energy lasers when he had a change of heart, thanks in part to Ovshinsky opening his eyes to the potential of silicon, as well as his involvement in the growing environmental and renewable energy movement.

Making the Switch from Lasers to Renewables

“It was one of the first Earth Days, in the early 1970s,” he said. “I was in graduate school having a great time working on high-energy lasers. But they were Star Wars lasers — the Strategic Defense Initiative.

“I wanted a career outside the military-industrial complex,” he said. “With the excitement of those first Earth Days, and with the oil embargo, doing something in renewable energy was appealing.”

He landed at Colorado State University to fabricate and test indium tin oxide on silicon solar cells. “Back then a thin film was depositing indium tin oxide on a silicon wafer,” he said. “People would roll their eyes now if you called that a thin film.”

NREL’s predecessor, the Solar Energy Research Institute (SERI), offered him a job — impressed, by and large, by his computer skills. “I always had a knack for programming,” he said. “Every lab that hired me wanted me for my programming. They didn’t want me for anything else.”

At SERI, Emery soon found that his expertise wasn’t in making solar cells, but rather in testing them. “There’s an art to making solar cells,” he said. “I could deposit a good one in about 50 tries. The true artists can make them in about 10.”

Building a World-Class Lab

So, Emery developed the test equipment and put together the data-acquisition system for characterizing and measuring the efficiency of solar cells. Turns out, his programming skills were essential to computer-control measurements and numerical control of instruments. “That’s what we needed to build our lab.”

He has spent his career building the capabilities of that testing and characterization lab, making it one of a handful of premier measurement labs in the world — and the only place in the United States that sets primary standards for solar-cell characterization.

A few years back, Emery published a paper on how to artificially increase solar-cell efficiency — not to encourage cheating, but to warn journal editors to be suspicious of claims.

“There have only been three or four papers in the past 35 years that have made claims that were outright bogus,” Emery said, lauding the solar community for its integrity. Still, editors need to be on the lookout for exaggerated claims.

New materials will have to be more efficient and more economical than silicon to make a big dent in the market, Emery says. “They have a huge learning curve to keep costs down,” he said, referring to thin films, organic PV, amorphous silicon, and other products just now moving from national labs to private companies. On the other hand, the newer materials have a great chance of invading niche markets such as solar cells on clothes, on signs, or on things that shine and glow or are hit by a laser. The multi-junction cell, for example, has already proven its superiority in outer space.

When he’s not at work, Emery enjoys the Colorado outdoors. Emery and his wife, Pat, just published a paper on their own solar house, for which Emery dug the ditches, painted, and installed the insulation.

And at work, he’ll keep testing and measuring the products of extraordinary research, as he continues to keep his lab among the best in the world at measuring solar module capacity.

As for the Cherry Award, Emery gives much of the credit to the colleagues who work in his lab and who have on average about 16 years of service at NREL. “Take my team away, and I wouldn’t have gotten this award — it’s that simple.”

Learn more about NREL’s work in Photovoltaic Measurements and Characterization.

—Bill Scanlon